Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation.

نویسندگان

  • Jin Qiu
  • William B J Cafferty
  • Stephen B McMahon
  • Stephen W N Thompson
چکیده

Sensory axons in the adult spinal cord do not regenerate after injury. This is essentially because of inhibitory components in the damaged CNS, such as myelin-associated inhibitors and the glial scar. However, if the sciatic nerve is axotomized before injury of the dorsal column, injured axons can regenerate a short distance in the spinal cord. Here, we show that sciatic nerve transection results in time-dependent phosphorylation and activation of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in dorsal root ganglion (DRG) neurons. This effect is specific to peripheral injuries and does not occur when the dorsal column is crushed. Sustained perineural infusion of the Janus kinase 2 (JAK2) inhibitor AG490 to the proximal nerve stump can block STAT3 phosphorylation after sciatic nerve transection and results in reduced growth-associated protein 43 upregulation and compromised neurite outgrowth in vitro. Importantly, in vivo perineural infusion of AG490 also significantly attenuates dorsal column axonal regeneration in the adult spinal cord after a preconditioning sciatic nerve transection. We conclude that STAT3 activation is necessary for increased growth ability of DRG neurons and improved axonal regeneration in the spinal cord after a conditioning injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined Intrinsic and Extrinsic Neuronal Mechanisms Facilitate Bridging Axonal Regeneration One Year after Spinal Cord Injury

Despite advances in promoting axonal regeneration after acute spinal cord injury (SCI), elicitation of bridging axon regeneration after chronic SCI remains a formidable challenge. We report that combinatorial therapies administered 6 weeks, and as long as 15 months, after SCI promote axonal regeneration into and beyond a midcervical lesion site. Provision of peripheral nerve conditioning lesion...

متن کامل

Crosstalk between KLF4 and STAT3 regulates axon regeneration

Cytokine-induced activation of signal transducer and activator of transcription 3 (STAT3) promotes the regrowth of damaged axons in the adult central nervous system (CNS). Here we show that KLF4 physically interacts with STAT3 upon cytokine-induced phosphorylation of tyrosine 705 (Y705) on STAT3. This interaction suppresses STAT3-dependent gene expression by blocking its DNA-binding activity. T...

متن کامل

Decorin, erythroblastic leukaemia viral oncogene homologue B4 and signal transducer and activator of transcription 3 regulation of semaphorin 3A in central nervous system scar tissue.

Scar tissue at sites of traumatic injury in the adult central nervous system presents a combined physical and molecular impediment to axon regeneration. Of multiple known central nervous system scar associated axon growth inhibitors, semaphorin 3A has been shown to be strongly expressed by invading leptomeningeal fibroblasts. We have previously demonstrated that infusion of the small leucine-ri...

متن کامل

DLK: The “Preconditioning” Signal for Axon Regeneration?

In this issue of Neuron, Shin et al. (2012) show that the dual leucine zipper kinase (DLK) is responsible for the retrograde injury signal in spinal sensory and motor neurons. DLK is required for the accelerated regeneration seen after axotomy and for the improved regeneration seen after a conditioning injury. DLK KO axons have severely reduced axon regeneration in vivo.

متن کامل

Upregulation of Leukemia Inhibitory Factor (LIF) during the Early Stage of Optic Nerve Regeneration in Zebrafish

Fish retinal ganglion cells (RGCs) can regenerate their axons after optic nerve injury, whereas mammalian RGCs normally fail to do so. Interleukin 6 (IL-6)-type cytokines are involved in cell differentiation, proliferation, survival, and axon regrowth; thus, they may play a role in the regeneration of zebrafish RGCs after injury. In this study, we assessed the expression of IL-6-type cytokines ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 7  شماره 

صفحات  -

تاریخ انتشار 2005